In computer science, a Fractal Tree index is a tree data structure that keeps data sorted and allows searches and sequential access in the same time as a B-tree but with insertions and deletions that are asymptotically faster than a B-tree. Like a B-tree, a Fractal Tree index is a generalization of a binary search tree in that a node can have more than two children. Furthermore, unlike a B-tree, a Fractal Tree index has buffers at each node, which allow insertions, deletions and other changes to be stored in intermediate locations. The goal of the buffers is to schedule disk writes so that each write performs a large amount of useful work, thereby avoiding the worst-case performance of B-trees, in which each disk write may change a small amount of data on disk. Like a B-tree, Fractal Tree indexes are optimized for systems that read and write large blocks of data. The Fractal Tree index has been commercialized in databases by Tokutek. Originally, it was implemented as a cache-oblivious lookahead array, but the current implementation is an extension of the B

^{ε}tree. The B^{ε}is related to the Buffered Repository Tree. The Buffered Repository Tree has degree 2, whereas the B^{ε}tree has degree B^{ε}. The Fractal Tree index has also been used in a prototype filesystem. An open source implementation of the Fractal Tree index is available.